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Abstract. Using the super Reshetikhin–Semenov-Tian-Shansky method and Gauss decom-
position, we obtain Drinfel’d’s currents realization of the quantum affine superalgebra
Uq ̂(gl(1|1)). The Hopf structure for Drinfel’d’s currents is also given.

There are three methods for constructing quantum algebras including quantum affine algebras
and Yangians. One was given by Drinfel’d [1] and Jimbo [3, 4] independently to the quantum
universal enveloping algebraUq(g) of any simple Lie algebrasg. Later Drinfel’d [2]
gave his second definition (or realization) of quantum affine algebrasUq(ĝ) and Yangians.
From views of the quantum inverse scattering method, Faddeev, Reshetikhin and Takhtajan
(FRT) [5] found another realization ofUq(g) by means of a solution of the Yang–Baxter
equation (YBE), then Reshetikhin and Semenov-Tian-Shansky (RS) [6] used the exact affine
analogue of the FRT method to obtain the third realization of quantum affine algebraUq(ĝ)

with centre extension. The explicit isomorphism between the realizations of quantum affine
algebrasUq(ĝ) given by Drinfel’d [2] and RS [6] was established by Ding and Frenkel [7]
using Gauss decomposition.

It should be pointed out that the authors of [8, 9] obtained all six-vertex and eight-
vertex solutions of the YBE with spectral and coloured parameters and classified them into
Baxter type and free-fermion type. [10] gives a solution of the YBE without a spectral
parameter, which can be obtained if the spectral parameter is zero in a six-vertex solution
of free-fermion type, and discusses a peculiar quantum algebra associated with the solution.
In addition, using the RS method a quantum affine algebra was also discussed associated
with a free-fermion-type solution of the YBE with spectral parameter [13]. However, the
classical limit of both quantum algebras is not a Lie superalgebra or a super affine algebra
although some of its relations (such asX2 = Y 2 = 0) look like fermionic relations. An
important concept given by Liao and Song [11] shows that, if we want to get a quantum
superalgebra from the non-standard solution of the YBE, we must use the graded calculation
for the YBE and RLL relations etc at the very beginning, i.e. a super version of the FRT
method. Recently, some attention has been paid to the construction of the quantum affine
superalgebras [12, 13]. In this paper, we use the super RS method to construct a quantum
affine superalgebra and Gauss decomposition (Ding–Frenkel map) to obtain its Drinfel’d
currents realization. The Hopf structure for these currents is computed straightforwardly
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from the original one defined in the RS method, however, it differs from that in [17]. We
will focus on the simplest one,Uq ̂(gl(1|1)), and this method can be easily extended to the

general caseUq ̂(gl(m|n)).
We denoteV as aZ2-graded two-dimensional vector space (graded auxiliary space), and

set the first basis ofV as even (bosonic) and the second as odd (fermionic). In this case,
the multiplication rule of the tensor product is(A⊗B)(C ⊗D) = (−1)P (B)P (C)AC ⊗BD,
whereP(A) = 0, 1 whenA is bosonic or fermionic. Then the graded (super) YBE takes
the following form [11]

η12R12(z/w)η13R13(z)η23R23(w) = η23R23(w)η13R13(z)η12R12(z/w) (1)

whereR(z) ∈ End(V ⊗ V ). TheR-matrix must obey the weight conservation condition
Rij,kl 6= 0 only whenP(i) + P(j) = P(k) + P(l), whereP(1) = 0 andP(2) = 1. The
components of the factorη areηik,j l = (−1)P (i)P (k)δij δlk . It is obvious thatηR(z) satisfies
the ordinary YBE whenR(z) is a solution of the super YBE. The super YBE can also be
written in components as

R
ij

ab(z/w)R
ak
pc(z)R

bc
qr (w)(−1)(P (a)−P(p))P (b) = (−1)P (e)(P (f )−P(r))Rjkef (w)R

if

dr (z)R
de
pq(z/w).

(2)

It can be verified that the followingR-matrix [14] satisfies the graded YBE (1)

R12(z) =



1 0 0 0

0 z− 1
zq − q−1

z(q − q−1)

zq − q−1 0

0 (q − q−1)

zq − q−1
z− 1

zq − q−1 0

0 0 0 −q − zq
−1

zq − q−1


. (3)

This solution is of free-fermion type and also satisfies the unitary condition:
R12(z)R21(z

−1) = 1. Whenz = 0 andq is replaced byq−1, the ηR(z) term degenerates
to the non-standard solution of the YBE which has been used in studying the quantum
superalgebraUq(gl(1|1)) [11]. The solution ofηR(z) can also be obtained from the non-
standard solution through the Baxterization procedure [15].

From the above solution of the graded YBE, we can define the quantum affine
superalgebraUq ̂(gl(1|1)) with a central extension employing the super RS method or

the affine version of that in [11].Uq ̂(gl(1|1)) is an associative algebra with generators
{lkij |1 6 i, j 6 2, k ∈ Z} and centrec, which subject to the following multiplication
relations

R12(z/w)L
±
1 (z)ηL

±
2 (w)η = ηL±2 (w)ηL±1 (z)R12(z/w) (4)

R12(z−/w+)L+1 (z)ηL
−
2 (w)η = ηL−2 (w)ηL+1 (z)R12(z+/w−) (5)

where z± = zq±c/2 . We have used standard notation:L±1 (z) = L±(z) ⊗ 1, L±2 (z) =
1⊗ L±(z) andL±(z) = (l±ij (z))i,j=1,2, l±ij (z) are generating functions (or currents) oflkij :

l±ij (z) =
∑∞

k=0 l
±k
ij z
±k.

This algebra admits the following co-product, co-unit and antipole structure

4(l±ij (z)) =
2∑
k=1

l±kj (zq
±c2/2)⊗ l±ik(zq∓c1/2)(−1)(k+i)(k+j) (6)

ε(l±ij (z)) = δij S(stL±(z)) = [stL±(z)]−1 (7)
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4(c) = c ⊗ 1+ 1⊗ c (8)

ε(c) = 0 S(c) = −c (9)

wherec1 = c ⊗ 1, c2 = 1⊗ c and [stL±(z)]ij = (−1)i+j l±ji (z). It is easy to verify that
the above co-product, co-unit and antipole structure are compatible with the associative
multiplication defined by (4) and (5), i.e. alllkij andc satisfy

4(ab) = 4(a)4(b) (10)

m(S ⊗ id)4(a) = m(id⊗ S)4(a) = ε(a) · 1 (11)

(ε ⊗ id)4 = (id⊗ ε)4 = id (12)

S(ab) = S(b)S(a) ε(ab) = ε(a)ε(b). (13)

We next give the Drinfel’d currents realization of the quantum affine superalgebra. As
was done in Ding and Frenkel [7],L±(z) have the following unique Gauss decompositions

L±(z) =
(

1 0

f ±(z) 1

)(
k±1 (z) 0

0 k±2 (z)

)(
1 e±(z)
0 1

)
=
(

k±1 (z) k±1 (z)e
±(z)

f ±(z)k±1 (z) k±2 (z)+ f ±(z)k±1 (z)e±(z)
)

(14)

wheree±(z), f ±(z) andk±i (z) (i = 1, 2) are generating functions ofUq ̂(gl(1|1)) andk±i (z)
(i = 1, 2) are invertible. The inversions ofL±(z) can be written as

L±(z)−1 =
(
k±1 (z)

−1+ e±(z)k±2 (z)−1f ±(z) −e±(z)k±2 (z)−1

−k±2 (z)−1f ±(z) k±2 (z)
−1

)
. (15)

We set

X+(z) = e+(z−)− e−(z+) X−(z) = f +(z+)− f −(z−). (16)

To calculate the (anti-) commutation relations ofX±(z) and k±i (z) (i = 1, 2), we must
make use of the inversions ofL±(z), the unitary property of theR-matrix and the following
equivalent forms of (4) and (5)

L±1 (z)
−1ηL±2 (w)

−1ηR12(z/w) = R12(z/w)ηL
±
2 (w)

−1ηL±1 (z)
−1 (17)

L+1 (z)
−1ηL−2 (w)

−1ηR12(z−/w+) = R12(z+/w−)ηL−2 (w)
−1ηL+1 (z)

−1 (18)

L±1 (z)R12(z/w)ηL
±
2 (w)

−1η = ηL±2 (w)−1ηR12(z/w)L
±
1 (z) (19)

L+1 (z)R12(z+/w−)ηL−2 (w)
−1η = ηL−2 (w)−1ηR12(z−/w+)L+1 (z) (20)

L±1 (z)
−1R21(w/z)ηL

±
2 (w)η = ηL±2 (w)ηR21(w/z)L

±
1 (z)

−1 (21)

L+1 (z)
−1R21(w+/z−)ηL−2 (w)η = ηL−2 (w)ηR21(w−/z+)L+1 (z)

−1. (22)

The calculation process is similar to that in [7] for quantum affine algebras. From (4)
(5) and (17)—(22), we can calculate all relations betweenk±i (z) (i = 1, 2) andX±(w) as
follows

[k±1 (z), k
±
1 (w)] = [k+1 (z), k

−
1 (w)] = 0 (23)

[k±1 (z), k
±
2 (w)] = [k±2 (z), k

±
2 (w)] = 0 (24)

w+q − z−q−1

z−q − w+q−1
k+2 (z)

−1k−2 (w)
−1 = w−q − z+q−1

z+q − w−q−1
k−2 (w)

−1k−2 (z)
−1 (25)



1992 Jin-fang Cai et al

z± − w∓
z±q − w∓q−1

k±1 (z)k
∓
2 (w)

−1 = z∓ − w±
z∓q − w±q−1

k∓2 (w)
−1k±1 (z) (26)

k±i (z)
−1X+(w)k±i (z) =

z±q − wq−1

z± − w X+(w) (i = 1, 2) (27)

k±i (z)X
−(w)k±i (z)

−1 = z∓q − wq−1

z∓ − w X−(w) (i = 1, 2) (28)

{X+(z),X+(w)} = {X−(z),X−(w)} = 0 (29)

{X+(z),X−(w)} = (q − q−1)

[
δ

(
w−
z+

)
k−1 (z+)

−1k−2 (z+)− δ
(
z−
w+

)
k+1 (w+)

−1k+2 (w+)
]

(30)

whereδ(z) = ∑k∈Z z
k. It is very clear thatX±(z) (or e±(z) andf ±(z)) are of fermionic

type for their anti-commutation relations andk±i (z) (i = 1, 2) are bosonic-type elements in

Uq ̂(gl(1|1)) as expected. This result differs from that in [13]: the relation betweenX+(z)
andX−(w) (30) is also anti-commutator which is a requirement of the superalgebra.

Introducing a transformation for the generating functionsX±(z) andk±i (z) (i = 1, 2) to
obtain the currents corresponding to generators ofgl(1|1)

E(z) = X+(zq) F (z) = X−(zq) (31)

K±(z) = k±1 (zq)−1k±2 (zq) H±(z) = k±2 (zq)k±1 (zq−1) (32)

then the (anti-) commutation relations forE(z), F (z),K±(z) andH±(z) are

[K±(z),K±(w)] = [H±(z),H±(w)] = 0 (33)

[K+(z),K−(w)] = [K±(z),H±(w)] = 0 (34)

H+(z)H−(w) =
(
(z−q − w+q−1)(z+q−1− w−q)
(z+q − w−q−1)(z−q−1− w+q)

)2

H−(w)H+(z) (35)

K±(z)H∓(w) = (w∓q − z±q−1)(z∓q − w±q−1)

(w±q − z∓q−1)(z±q − w∓q−1)
H∓(w)K±(z) (36)

[K±(z), E(w)] = [K±(z), F (w)] = 0 (37)

E(w)H±(z) = z±q − wq−1

z±q−1− wqH
±(z)E(w) (38)

F(w)H±(z) = z∓q−1− wq
z∓q − wq−1

H±(z)F (w) (39)

{E(z), E(w)} = {F(z), F (w)} = 0 (40)

{E(z), F (w)} = (q − q−1)

[
δ

(
w−
z+

)
K−(z+)− δ

(
z−
w+

)
K+(w+)

]
. (41)

The above relations are Drinfel’d’s currents realization of quantum affine superalgebra
Uq ̂(gl(1|1)). Settinge±(z∓q) = E±(z) and f ±(z±q) = F±(z), thenE(z) = E+(z) −
E−(z) and F(z) = F+(z) − F−(z). The co-product of the generating functions
E±(z), F±(z),K±(z) andH±(z) can be calculated directly from (6)

4(E±(z)) = 4(l±11(z∓q)
−1l±12(z∓q))

= [l±11(zq
1∓c1/2)⊗ l±11(zq

1∓c1∓c2/2)− l±21(zq
1∓c1/2)⊗ l±12(zq

1∓c1∓c2/2)]−1

× [l±12(zq
1∓c1/2)⊗ l±11(zq

1∓c1∓c2/2)+ l±22(zq
1∓c1/2)⊗ l±12(zq

1∓c1∓c2/2)]
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= [1⊗1−l±11(zq
1∓c1/2)−1l±21(zq

1∓c1/2)⊗l±11(zq
1∓c1∓c2/2)−1l±12(zq

1∓c1∓c2/2)]−1

× [l±11(zq
1∓c1/2)−1l±21(zq

1∓c1/2)⊗ 1+ l±11(zq
1∓c1/2)−1l±22(zq

1∓c1/2)

⊗ l±11(zq
1∓c1∓c2/2)−1l±12(zq

1∓c1∓c2/2)]

= [1⊗ 1+ l±11(zq
1∓c1/2)−1l±21(zq

1∓c1/2)⊗ E±(zq∓c1)]

× [E±(z)⊗ 1+ l±11(zq
1∓c1/2)−1l±22(zq

1∓c1/2)⊗ E±(zq∓c1)]

= E±(z)⊗ 1+K±(zq∓c1/2)⊗ E±(zq∓c1) (42)

4(F±(z)) = 4(l±21(z±q)l
±
11(z±q)

−1)

= 1⊗ F±(z)+ F±(zq±c2)⊗K±(zq±c2/2) (43)

4(K±(z)) = 4(k±1 (zq)−1k±2 (zq))
= 4(l±11(zq)

−1(l±22(zq)− l±21(zq)l
±
11(zq)

−1l±12(zq)))

= 4(l±11(zq)
−1(l±22(zq)− l±21(zq)E

±(z±)))
= [1⊗ 1+ l±11(zq

1±c2/2)−1l±21(zq
1±c2/2)⊗ l±11(zq

1∓c1/2)−1l±12(zq
1∓c1/2)]

× [l±11(zq
1±c2/2)−1k±2 (zq

1±c2/2)⊗ l±11(zq
1∓c1/2)−1k±2 (zq

1∓c1/2)

− l±11(zq
1±c2/2)−1l±21(zq

1±c2/2)l±11(zq
1±c2/2)−1k±2 (zq

1±c2/2)

⊗ l±11(zq
1∓c1/2)−1k±2 (zq

1∓c1/2)l±11(zq
1∓c1/2)−1l±12(zq

1∓c1/2)]

= K±(zq±c2/2)⊗K±(zq∓c1/2) (44)

4(H±(z)) = 4(k±1 (zq−1)k±2 (zq)) = 4(k±1 (zq−1)k±1 (zq)K
±(z))

= [l±11(zq
−1±c2/2)⊗ l±11(zq

−1∓c1/2)− l±21(zq
−1±c2/2)⊗ l±12(zq

−1∓c1/2)]

× [l±11(zq
1±c2/2)⊗ l±11(zq

−1∓c1/2)− l±21(zq
1±c2/2)⊗ l±12(zq

−1∓c1/2)]

× [K±(zq±c2/2)⊗K±(zq∓c1/2)]

= H±(zq±c2/2)⊗H±(zq∓c1/2)− l±21(zq
−1±c2/2)l±11(zq

1±c2/2)K±(zq±c2/2)

⊗K±(zq∓c1/2)(q−1l±11(zq
−1∓c1/2)l±12(zq

1∓c1/2)+ l±12(zq
−1∓c1/2)l±11(zq

1∓c1/2))

= H±(zq±c2/2)⊗H±(zq∓c1/2)− (q + q−1)F±(zq−2∓c1/2±c2/2)H±(zq±c2/2)

⊗H±(zq∓c1/2)E±(zq−2∓c1/2±c2/2). (45)

The antipole and co-unit structure for these currents is

S(K±(z)) = K±(z)−1 (46)

S(E±(z)) = −K±(zq±c/2)−1E±(zq±c) (47)

S(F±(z)) = −F±(zq∓c)K±(zq∓c/2)−1 (48)

S(H±(z)) = H±(z)−1− (q + q−1)F±(zq2∓c/2)H±(z)−1K±(zq2)−1E±(zq2±c/2) (49)

ε(K±(z)) = ε(H±(z)) = 1 (50)

ε(E±(z)) = ε(F±(z)) = 0. (51)

The compatibility condition (11) of the antipole and co-product forE±(z), F±(z),K±(z) is
easily checked. For simplicity, we do checkm(S⊗id)4(H±(z)) = m(id⊗S)4(H±(z)) = 1,
using the following relations obtained from (4) and (5)

E±(z±q2)H±(z) = q2H±(z)E±(z±q−2)

F±(z∓q−2)H±(z) = q2H±(z)F±(z∓q2)

(q + q−1){E±(z±q2), F±(z∓q−2)} = K±(zq2)−K±(zq−2)
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then

m(S ⊗ id)4(H±(z)) = S(H±(zq±c/2))(H±(zq±c/2)
+(q + q−1)F±(zq−2)K±(zq−2±c/2)−1H±(zq±c/2)E±(zq−2±c))
= 1+ (q + q−1)H±(zq±c/2)−1F±(zq−2)

×H±(zq±c/2)K±(zq−2±c/2)−1E±(zq−2±c)
−(q + q−1)F±(zq2)K±(zq2±c/2)−1

×H±(zq±c/2)−1E±(zq2±c)H±(zq±c/2)− (q + q−1)2F±(zq2)H±(zq±c/2)−1

×K±(zq2±c/2)−1E±(zq2±c)F±(zq−2)

×K±(zq−2±c/2)−1H±(zq±c/2)E±(zq−2±c)
= 1+ (q + q−1)q2F±(zq2)K±(zq−2±c/2)−1E±(zq−2±c)
−(q + q−1)q2F±(zq2)K±(zq2±c/2)−1E±(zq−2±c)
−(q + q−1)q2F±(zq2)K±(zq2±c/2)−1(K±(zq2±c/2)
−K±(zq−2±c/2))K±(zq−2±c/2)−1E±(zq−2±c)
= 1.

Similarly, we can also prove

m(id⊗ S)4(H±(z)) = 1.

The co-product as well as the antipole obtained in this work is different from that in
[17]; the relation between them could be found from the so-called twisting, which will be
carried out in a forthcoming paper [18]. An analogous procedure can also be applied in
studying super Yangian doubles using a rational solution of the super YBE [16].

Acknowledgment

The authors would like to thank Dr X M Ding for supplying us with [13] before publication.

Note added in proof. After the completion of this work, we found that the same result has been independently
obtained by Zhang [17].

References

[1] Drinfel’ d V G 1986 Quantum groupsProc. ICM-86 (Berkeley)vol 1 (New York: Academic) p 789
[2] Drinfel’ d V G 1988Sov. Math. Dokl.36 212
[3] Jimbo M 1985Lett. Math. Phys.10 63
[4] Jimbo M 1986Commun. Math. Phys.102 537
[5] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1988 Algebraic Anal.1 129
[6] Reshetikhin N Yu and Semenov-Tian-Shansky M A 1990 Lett. Math. Phys.19 133
[7] Ding J and Frenkel I B 1993 Commun. Math. Phys.156 277
[8] Sun Xiao-dong, Wang Shi-kun and Wu Ke 1995J. Math. Phys.10 6043–63
[9] Wang Shi-kun 1996J. Phys. A: Math. Gen.29 2259–77

[10] Jing N, Ge M L and Wu Y S 1991Lett. Math. Phys.21 193
[11] Liao L and Song X C 1991Mod. Phys. Lett.A 6 959
[12] Yamane H 1996 On defining relations of the affine Lie superalgebras and their quantized universal enveloping

superalgebraPreprint q-alg/9603015
[13] Fan H, Hou B Y and Shi K J 1997J. Math. Phys.38 411
[14] Perk J H and Shultz C L 1981Phys. Lett.84A 407
[15] Yan H, Zhou Y and Zhu T H 1993J. Phys. A: Math. Gen.26 935
[16] Cai J F, Ju G X, Wu K and Wang S K 1997J. Phys. A: Math. Gen.30 L347
[17] Zhang Y Z 1997 Comments on Drinfeld realization of quantum affine superalgebraUq [gl(m|n)(1)] and its

Hopf algebra structurePreprint q-alg/9703020
[18] Cai J F, Wang S K, Wu K and Xiong C 1997 The super Yangian doubleDY(gl(1|1)) and its coproducts

Proc. Johns Hopkins Workshopto appear


